A new ¹⁷O-isotopic enrichment method for the NMR characterisation of phosphate compounds

Alexandrine Flambard, Lionel Montagne* and Laurent Delevoye

Received (in Cambridge, UK) 4th April 2006, Accepted 23rd June 2006 First published as an Advance Article on the web 6th July 2006 DOI: 10.1039/b604803j

Heating phosphate compounds under ¹⁷O-enriched water vapour is an easy and rapid method to prepare homogeneously enriched and pure samples for the acquisition of ¹⁷O NMR spectra with a good sensitivity.

Although its low natural abundance requires isotopic enrichment, solid-state NMR spectroscopy of oxygen-17 is commonly used for the structural study of a wide range of oxide materials like glasses, gels, catalysts and ionic conductors.¹⁻⁴ Phosphate compounds are found in all of these materials,^{5–8} and they are also widely used as additives in food, pharmaceutical and agricultural domains.9-11 However, although there is a large number of publications on solid-state ³¹P NMR spectroscopy,¹²⁻¹⁸ ¹⁷O solid-state NMR studies of phosphate compounds are not numerous.¹⁹⁻²² This is due mainly to the fact that the conventional ¹⁷O-isotopic enrichment method of oxide compounds, which is based on the hydrolysis of a MCl_x salt by ¹⁷O-enriched water, ²³ is not easy to apply to phosphates. The preparation of ¹⁷O-enriched alumina was recently reported²⁴ using a hydrothermal method, but its applicability to phosphate compounds is not possible because it involves a metallic precursor.

In the case of ¹⁷O-enrichment using the hydrolysis of PCl₅, we have shown¹⁹ that a careful experimental procedure must be used to limit the presence of residual hydroxyl groups and to obtain pure phases. Glassy ¹⁷O-enriched sodium metaphosphate (NaPO₃) was prepared¹⁹ by the hydrolysis of PCl₅, and other sodium phosphate¹⁹ and borophosphate²⁰ glass compositions were derived by melting the metaphosphate with the appropriate additives [e.g. (NH₄)₂HPO₄, Na₂CO₃, B₂O₃]. This procedure has, however, several major drawbacks: (1) the enriched glasses have a lower level of ¹⁷O-enrichment than the initial product NaPO₃, (2) the procedure is long and delicate and (3) the available glass compositions are limited since they must contain sodium and should be derived from NaPO₃. An alternative method²¹ consists in the thermal oxidation of red phosphorus into P₂O₅, but strict dry conditions must be used to obtain a pure enriched compound, and the handling of P_2O_5 as a precursor of phosphates is not easy owing to its strong hygroscopicity. An oxygen exchange between phosphate ions and water would be possible in solution, but it is reported²⁵ that the process is very slow and some hydrolysis of POP groups may occur. Thus, there is a large need for an alternative isotopic enrichment method that would be easier, more versatile, and faster than using PCl₅ hydrolysis or P thermal oxidation.

Phosphates are hydrolysed by water in the liquid or in the vapour²⁶ state, leading to the formation of P–OH groups:

$$P-O-P + H_2O \rightarrow P-O-H + P-O-H$$

These P–OH groups can then be condensed by a thermal treatment above 300 $^{\circ}$ C, which leads to the enriched phosphate, provided that the reaction time is sufficient to enable a statistical exchange between the oxygens:

$$P-O-H + P-O-H \rightarrow P-O-P + H_2O$$

Hence, we prepared ¹⁷O-enriched phosphate compounds by a treatment under ¹⁷O-enriched water vapour, at a temperature close to 600 °C, at which temperature the hydrolysis and condensation kinetics are very fast. This method is similar to that used for ¹⁸O enrichment of samples for mass spectrometry.27 In this case though, the aim is to measure diffusion coefficients and the homogeneity is therefore not a relevant parameter. The efficiency of this enrichment technique is demonstrated here in a solid-state NMR study of two phosphate compounds: the sodium metaphosphate (NaPO₃) and the sodium tripolyphosphate (Na₅P₃O₁₀), which have different degrees of polymerisation. These sodium phosphates were chosen because (1) their structure is well known and (2) the sodium salts are somewhat hyproscopic, hence they should be sensitive to a possible incomplete hydrolysis-condensation process. The aim was to show that the ¹⁷O-isotopic enrichment is homogeneous, without the formation of residual hydroxyl groups, and that the enrichment treatment does not alter the phosphate network.

The enrichment procedure consisted in heating the phosphate compound in a platinum crucible at a temperature between 500 and 700 °C. The ¹⁷O-enriched water vapour (ca. 40 atom%) was then introduced with a partial pressure fixed by an external water bath. It should be noticed that several samples could be enriched simultaneously by introducing several platinum crucibles in the furnace. After treatment, the water vapour was collected by condensation into a liquid nitrogen trap. Heating tapes were used in order to prevent water condensation on the parts outside the furnace. The samples presented here were ¹⁷O-enriched by heating NaPO₃ and Na₅P₃O₁₀ glasses at 550 or 700 °C, for 8 to 16 hours, using 1.0 g of 37.9% ¹⁷O-enriched water. After the treatment, NaPO₃ and Na₅P₃O₁₀ were crystallised since the temperature used (550 or 700 °C) is above the crystallisation temperature of the glasses. The glasses were finally obtained by a further thermal treatment under air at 800 °C for 15 min and 1000 °C for 2 h for the metaphosphate and tripolyphosphate, respectively, followed by a quenching to room temperature (no loss of ¹⁷O was observed after several melting treatments).

UCCS, Unité de Catalyse et Chimie du Solide, UMR-CNRS 8181, Ecole Nationale Supérieure de Chimie de Lille, Université des Sciences et Technologies de Lille, BP90108, 59655 Villeneuve d'Ascq, France. E-mail: lionel.montagne@univ-lille1.fr

³¹P NMR spectra (Fig. 1) of the ¹⁷O-enriched and reference (non-enriched) glasses were recorded in order to verify the integrities of the phosphate networks after the enrichment treatment. Sodium phosphate glasses are good candidates since the different Q^n sites are well resolved on the ³¹P MAS-NMR spectra.²⁸ The ³¹P MAS-NMR spectrum of the non-enriched NaPO₃ glass [Fig. 1A(a)] shows a main resonance at -20 ppm, attributed to $Q^2(Na)$ sites²⁸ and two weak resonances at -8 and +1 ppm due to Q¹(OH) and Q¹(Na), respectively.¹⁹ The spectra are identical for the enriched and non-enriched glasses [Fig. 1A(a) and 1B(a)], and the relative concentration of Q^1 sites is kept small for both glasses (ca. 0.9 mol%). We thus conclude that the enrichment treatment did not affect the structure of the metaphosphate network. The ³¹P MAS-NMR spectra of the non-enriched (Fig. 1C) and ¹⁷O-enriched (Fig. 1D) Na₅P₃O₁₀ glasses show the expected resonances of $Q^{1}(Na)$ sites at +1.4 ppm and $Q^{2}(Na)$ at -14.4 ppm.²⁸ Again, the quantification of the relative amount of these sites leads to identical results for ¹⁷O-enriched and nonenriched glasses ($62\% Q^1$, $38\% Q^2$).

In a second step, ${}^{1}H{}^{-31}P$ CP-MAS experiments have been performed in order to highlight the presence of hydroxyl groups in the NaPO₃ glasses. For the ¹⁷O-enriched NaPO₃, the comparison of the ³¹P and ${}^{1}H{}^{-31}P$ CP-MAS NMR spectra [Fig. 1B(a and b)] shows resonances at +2, -8 and -20 ppm, which stem from P–OH groups or adsorbed H₂O molecules, located on Q⁰, Q¹ and Q² sites, respectively.²⁹ Although the quantification of CP-MAS NMR spectra is not straightforward, we observe that the quantity of phosphorus sites close to protons is very low in the reference glass as well as in the enriched glass. Thus, we conclude that the treatment under water vapour does not increase the amount of hydroxyl groups in the glass.

Fig. 1 ³¹P MAS-NMR spectra of the reference (non-enriched) NaPO₃ glass (A, a), ¹⁷O-enriched NaPO₃ glass (B, a), non-enriched Na₅P₃O₁₀ glass (C) and ¹⁷O-enriched Na₅P₃O₁₀ glass (D). {¹H}-³¹P CP-MAS NMR spectra of the non-enriched NaPO₃ glass (A, b) and ¹⁷O-enriched NaPO₃ glass (B, b). They were acquired at 9.4 T, at a rotor spinning speed of 10 kHz, a $\pi/9$ pulse angle and a recycling delay of 120 s. {¹H}-³¹P CP-MAS NMR spectra were recorded with a RF field of 55 kHz. The contact time was set to 1 ms.

The ¹⁷O MAS-NMR spectra (Fig. 2) of the ¹⁷O-enriched glasses were recorded at 18.8 T. Indeed, we have shown that the large quadrupolar broadening of the POP bridging oxygens can only be reduced at a high static magnetic field.¹⁹ Under these conditions, it is possible to quantify the relative amounts of P-O-P (bridging oxygens, BO) and P-O-Na (non-bridging oxygens, NBO) sites using the one-dimensional ¹⁷O MAS-NMR spectrum, with no need to acquire a high-resolution 2D MQ-MAS spectrum, which is more difficult to quantify. The deconvolution of the ¹⁷O MAS-NMR spectra of the NaPO3 and Na5P3O10 glasses is shown in Fig. 2(a and b), and the fit parameters are reported in Table 1. They were performed with the DM-fit software.³⁰ The calculated BO/NBO ratios were deduced from the relative quantities of Q^n sites measured by the decomposition of the ³¹P NMR spectra.¹⁹ The measured BO/NBO ratios are in full agreement with the calculated values for the sodium metaphosphate (NaPO₃) and tripolyphosphate ($Na_5P_3O_{10}$), and they are identical for enriched and non-enriched samples. Thus, ¹⁷O NMR spectroscopy shows that the ¹⁷O isotopic enrichment method with water vapour leads to homogeneously enriched samples.

In order to address the question of the sensitivity of the method, we compared the ^{17}O MAS-NMR spectrum of the NaPO₃ glass enriched under water vapour with that obtained by the PCl₅ hydrolysis method. 19 Moreover, different experimental conditions were carried out for the enrichment under water vapour: the exchange time at 550 °C was 8 or 16 h, and the temperature of the exchange was set to 550 or 700 °C (for 8 h). One can note that

Fig. 2 ^{17}O MAS-NMR spectra of the ^{17}O -enriched NaPO₃ (a) and Na₅P₃O₁₀ (b) glasses, acquired at 18.8 T, at a rotor spinning speed of 30 kHz, using a recycling delay of 1 s. The total acquisition time was 20 min and 2 h for NaPO₃ and Na₅P₃O₁₀ respectively.

Table 1 Parameters resulting from the deconvolution of ¹⁷O MAS-NMR spectra of NaPO₃ and Na₅P₃O₁₀: isotropic chemical shift (δ_{iso}), quadrupolar parameters (C_Q , η) and fractions of bridging (BO) and non-bridging (NBO) oxygens

Glasses	NaPO ₃	Na ₅ P ₃ O ₁₀
NBO site		
$\delta_{\rm iso} \pm 2/\rm ppm$	83	81
$C_0 \pm 0.1$ /MHz	4.2	3.8
$\eta \pm 0.01$	0.18	0.20
Exp. NBO fraction \pm 0.7 (%)	66.5	79.7
Calc. NBO fraction (%)	66.7	79.5
BO site		
$\delta_{iso} \pm 2/ppm$	119	125
$C_0 \pm 0.3$ /MHz	7.6	6.8
$\eta \pm 0.01$	0.35	0.46
Exp. BO fraction \pm 0.7 (%)	33.5	20.3
Calc. BO fraction (%)	33.3	20.5
Exp. BO/NBO ratio \pm 0.01	0.50	0.26
Calc. BO/NBO ratio	0.50	0.26

Fig. 3 ¹⁷O MAS-NMR spectra of the NaPO₃ glass, ¹⁷O-enriched by PCl₅ hydrolysis (a) and under $H_2^{17}O$ vapour at 700 °C for 8 h (b), 550 °C for 16 h (c) and 8 h (d). The spectra were acquired at 18.8 T, at a rotor spinning speed of 20 kHz, using a recycling delay of 2 s. The total acquisition time was 20 min for each spectrum.

Fig. 4 ¹⁷O MAS-NMR (9.4 T) spectra of A BiCd₂PO₆ (total acquisition time 512 s), and B Bi₂W_{0.9}Nb_{0.1}O_{5.95} (total acquisition time 1024 s). enriched under water vapour 8 h at 650 °C (a). Bi2W0.9Nb0.1O5.95 was also enriched under ¹⁷O₂ gas (20 atom%) at 700 °C for 3 days (b).

NaPO₃ is melted at 700 °C ($T_{\text{melting}} = 630$ °C). Fig. 3 compares the intensities of the four ¹⁷O MAS-NMR spectra. The most intense spectrum corresponds to the glass enriched by the hydrolysis of PCl₅ [Fig. 3(a)]. Its intensity is however quasi-similar to the spectrum of the sample enriched under water vapour at 700 °C for 8 h [Fig. 3(b)]. When the sample is enriched under water vapour at 550 °C [Fig. 3(c and d)], the spectra have a lower intensity, but the intensity is proportional to the exchange time. We observe that the enrichment method with water vapour has a comparable yield than that obtained when using PCl₅ hydrolysis in the case where the exchange is carried out on a molten sample. The efficiency is reduced when the exchange is conducted on solid samples, since the diffusion is much slower.

We conclude that the method based on treatment under ¹⁷Oenriched water vapour gives the means to prepare ¹⁷O-enriched phosphate glasses with a good homogeneity and no structural modification. The efficiency is dependent on the treatment time and temperature, and the treatment is more efficient on molten samples. The procedure is much faster than that using PCl_5 hydrolysis (*e.g.* 8 h compared to 20 h), it is simpler (one step compared to 3 steps¹⁹), and several samples can be enriched in a single operation.

This enrichment method was successfully applied to more complex sodium niobiophosphate glasses,¹² and on a crystalline

phosphate compound, BiCd₂PO₆ (Fig. 4A). Moreover, oxide compounds other than phosphates were also successfully enriched with this method. For instance, the compound $Bi_2W_{0.9}Nb_{0.1}O_{5.95}^4$ (Fig. 4B) could be enriched under water vapour (a) with a better yield than that obtained with a treatment under 17 O-enriched O₂ gas (b).

The FEDER, Région Nord Pas-de-Calais, Ministère de l'Education Nationale de l'Enseignement Supérieur et de la Recherche, CNRS, USTL and ENSC-Lille are acknowledged for funding of NMR spectrometers. B. Revel, from the Centre Commun de Mesures RMN de l'USTL, is acknowledged for his NMR technical assistance.

Notes and references

- 1 L. S. Du and J. F. Stebbins, J. Non-Cryst. Solids, 2005, 351, 43-45, 3508.
- 2 K. O. Drake, D. Carta, L. J. Skipper, F. E. Sowrey, R. J. Newport and M. E. Smith, Solid State Nucl. Magn. Reson., 2005, 27, 1-2, 28.
- L. Peng, Y. Liu, N. Kim, J. E. Readman and C. P. Grey, Nat. Mater., 2005, 4, 3, 216.
- 4 N. Kim, R.-N. Vannier and C. P. Grey, Chem. Mater., 2005, 17, 8, 1952
- 5 F. Muñoz, F. Agulló-Rueda, L. Montagne, R. Marchand, A. Durán and L. Pascual, J. Non-Cryst. Solids, 2004, 347, 1-3, 153.
- M. Casciola, G. Alberti, A. Donnadio, M. Pica, F. Marmottini, A. Bottino and P. Piaggio, J. Mater. Chem., 2005, 15, 39, 4262.
- W.-S. Dong, J. K. Bartley, F. Girgsdies, R. Schlögl and G. J. Hutchings, J. Mater. Chem., 2005, 15, 38, 4147.
- 8 C. Delacourt, P. Poizot, M. Morcrette, J.-M. Tarascon and Masquelier, Chem. Mater., 2004, 16, 1, 93. C
- 9 D. D. L. Chung, J. Mater. Sci., 2003, 38, 13, 2785.
- 10 F. Rashchi and J. A. Finch, Miner. Eng., 2000, 13, 10, 1019.
- 11 T. Kanazawa, Inorganic phosphate materials, Elsevier, New York, 1989. 12 A. Flambard, L. Montagne, L. Delevoye, G. Palavit, J.-P. Amoureux
- and J.-J. Videau, J. Non-Cryst. Solids, 2004, 345-346, 75. 13 E. Bekaert, L. Montagne, L. Delevoye, G. Palavit and A. Wattiaux,
- J. Non-Cryst. Solids, 2004, 345-346, 70. 14 K. J. D. Mackenzie and M. E. Smith, Multinuclear solid-state NMR of inorganic materials, Pergamon, Amsterdam, Pergamon materials series, vol. 6, 2002, p. 593.
- 15 F. Fayon, I. J. King, R. K. Harris, J. S. O. Evans and D. Massiot, C. R. Chim., 2004, 7, 3-4, 351.
- 16 C. Jäger, P. Hartmann, R. Witter and M. Braun, J. Non-Cryst. Solids, 2000, 263, 61.
- G. Tricot, L. Delevoye, G. Palavit and L. Montagne, Chem. Commun., 17 2005, 5289.
- J. J. Fitzgerald, Solid-state NMR spectroscopy of inorganic materials, 18 ACS Symp. Ser., 1999, 717, 229.
- 19 M. Zeyer, L. Montagne, V. Kostoj, G. Palavit, D. Prochnow and C. Jäger, J. Non-Cryst. Solids, 2002, 311, 223.
- 20 M. Zeyer-Düsterer, L. Montagne, G. Palavit and C. Jäger, Solid State Nucl. Magn. Reson., 2005, 27, 1–2, 50. 21 B. R. Cherry, T. M. Alam, C. Click, R. K. Brow and Z. Gan, J. Phys.
- Chem. B, 2003, 107, 21, 4894.
- 22 M. Witschas, H. Eckert, H. Freiheit, A. Putnis, G. Korus and M. Jansen, J. Phys. Chem. A, 2001, 105, 28, 6808.
- 23 S. Schramm and E. Oldfield, J. Am. Chem. Soc., 1984, 106, 2502.
- 24 B. C. Schmidt, F. Gaillard and M. E. Smith, Solid State Nucl. Magn. Reson., 2004, 26, 197.
- 25 I. P. Gerothanassis and N. Sheppard, J. Magn. Reson., 1982, 46, 423.
- 26 J. R. van Wazer, Phosphorus and its compounds, Interscience Publishers, New York, 1958, p. 452.
- 27 A. Atkinson, R. J. Chater and R. Rudkin, Solid State Ionics, 2001, 139, 233.
- 28 R. K. Brow, R. J. Kirkpatrick and G. L. Turner, J. Non-Cryst. Solids, 1990. 116. 39.
- 29 R. M. Wenslow and K. T. Mueller, J. Phys. Chem. B, 1998, 102, 45, 9033
- 30 D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan and G. Hoatson, Magn. Reson. Chem., 2002, 40, 70.